Headquarters U.S. Air Force

Integrity - Service - Excellence

Former George Air Force Base

HYDRUS Remediation Modeling June 2016

-9

Proposed HYDRUS Application

- Use HYDRUS-2D model code in vertical profiles to simulate source area mass loading, vadose zone and groundwater flow and transport, and attenuation of organic compound plumes including LNAPL areas
- Replaces VLEACH and other analytical vadose zone models
- Model areas where there is potential for vadose zone contamination to affect groundwater and for Dieldrin colloidal transport
- No NAPL areas—FT019, FT082, SS083, others as needed
- NAPL area—SS030, ST067b, others as needed
- Dieldrin area—OT071
- Can provide source loading terms for 3D MODFLOW-SURFACT groundwater transport

Integrity - Service - Excellence

HYDRUS Model Code

- Finite element code with internal controls on transport numerical dispersion
- Originally developed by U.S. Dept. of Agriculture in 1998-1999 for simulation of flow and transport in vadose zone by Jirka (Jiri) Šimůnek, and M. Th. van Genuchten (creator of van Genuchten equation)
- Extended to include a wide variety of hydrogeologic conditions
- Calculates recharge from daily or hourly meteorological data
- HYDRUS solves the Richards equation for unsaturated/saturated flow

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left[K(\theta) \left(\frac{\partial \psi}{\partial z} - 1 \right) \right]$$
 (1D version)

where K = hydraulic conductivity, θ = water content, ψ = pressure head, z = elevation, t = time

- **Extensive solute transport modules including colloidal transport**
- Heat transport accommodates heating and cooling of soil and recharge water
- Wide range of available flow and transport boundary conditions

Integrity - Service - Excellence

HYDRUS References

- HYDRUS 2D Code description: http://www.pc-progress.com/en/Default.aspx?h3d-description
- Numerous literature references on HYDRUS applications: http://www.pc-progress.com/en/Default.aspx?Downloads
- There is a HYDRUS to MODFLOW flow only package for linking MODFLOW and HYDRUS

Integrity - Service - Excellence

Why HYDRUS Code?

- **Well vetted and peer reviewed in literature**
- Hundreds of examples
- Not limited by analytical vadose zone model assumptions
- Robust solution algorithms for variably saturated simulations
- **Colloidal transport simulation module**
- Comprehensive user interface for model setup and output analysis
- **■** Good user support from developers

Integrity - Service - Excellence

\$

HYDRUS Limitations

- Simulates water flow and contaminant transport in variably saturated conditions—soil and vapor concentrations determined from partitioning model selected (e.g. equilibrium, non-equilibrium)
- Because HYDRUS simulates multi-phase flow and transport, model stability sensitive to initial conditions (typical of multi-phase models)
- Computationally very intensive, typical of multi-phase flow and transport models
- Currently implemented for 2D X-Z simulations, can be expanded to 3D with software upgrade
- 3D flow and transport simulations require long simulation run-times without parallel processing capabilities
- Solute transport solution may have small, minor concentration artifacts near steep concentration fronts in vadose zone

Integrity - Service - Excellence

Input Data

- Surface soil from SSURGO database
- Lithology, vadose zone, and groundwater inputs from profiles thru 3D models
- Meteorological data—CIMIS station 117 and NOAA Victorville pump station
- Unsaturated flow parameters
 - Site-specific data from OT071 drilling program—PTS vapor transport package (grain size, porosity, permeability, density, moisture content, foc)
 - van Genuchten parameters from published soil type databases using above results
- Vadose zone concentrations derived from current soil vapor concentrations and assume equilibrium partitioning between vapor, water, and soil
- **LNAPL** source loading derived from LNAPL well groundwater samples

Integrity - Service - Excellence

OU1 3D Lithology and Plume Data Analysis

Integrity - Service - Excellence

Profile Cross-Section Example thru FT082

Integrity - Service - Excellence

HYDRUS Flow Input—Hydraulic Data

Soil Type Parameters

- Hydraulic conductivity (Ks)
- Porosity (Qs)
- Residual saturation (Qr)
- Van Genuchten/Mualem parameters

Variable Saturation Hydraulic Models

Integrity - Service - Excellence

HYDRUS Flow Input— Meteorological Data

- Input temporal (daily, hourly, etc.) meteorological data on top of model
- Infiltration calculated in model by precipitation – evapotranspiration
- Recharge calculated by vadose zone water that reaches water table
- Can define various surface vegetation types, for GAFB will use sparse grass

Integrity - Service - Excellence

Meteorological Input Data

- Use daily Victorville CIMIS station 117 from 1993-present
- For long-term simulations
 - Repeat CIMIS 117 data or
 - Use daily Victorville Pump Station for 1940-1993

Integrity - Service - Excellence

HYDRUS Transport Input—Solute Transport

- Various processes and solution methods
- Solute transport module accommodates retardation, equilibrium and nonequilibrium adsorption/desorption), chain decay, and colloidal transport
- Internal control on Peclet and Courant numbers to limit numerical dispersion

Integrity - Service - Excellence

Calibration

- Flow—Select wells along and near profile line and compare model results to observed water level changes over time
- **■** Transport
 - Source area
 - No NAPL sites—Compare model results to historical groundwater concentrations
 - NAPL sites—Historical concentrations and current groundwater concentrations from LNAPL wells
 - Plume area—Compare concentrations at monitor wells along and near the profile line to model results

Integrity - Service - Excellence

Remediation Simulations

- Vadose zone contamination—Initial concentrations derived from soil vapor concentrations over time
- LNAPL contamination—Initial concentrations derived from groundwater concentrations over time
- Remediation concentration reductions will be simulated by observed or calculated concentration reductions depending on remedial option
- Depending on compound, decay will be included to match observed concentrations over time

Integrity - Service - Excellence

HYDRUS Model Example

- 2D X-Z profile section extends from ground surface down through top portion of Lower Aquifer
- Illustrative generic profile for FT082 (final model will incorporate more lithologic detail)
- Unsaturated flow parameters derived from soil type
- Surface soil from SSURGO soils database (U.S. Dept. Ag.)
- **■** Generalized lithology from 3D lithologic model
- Gradients and hydraulic properties from OU1 MODFLOW model (2009)
- Contaminant source derived from fire-training operations and assumed source mass loading including enhanced infiltration from fire training over time (30 years)

Integrity - Service - Excellence

Example Model Soil Type and Observation Nodes

Integrity - Service - Excellence

Example Model Soil Properties

Soil Type	Qr (frac)	Qs (frac)	Alpha (1/cm)	n(-)	Ks (cm/d)	(unitless)	Ks (cm/sec)	Ks (ft/d)	Zone
Loam	0.078	0.43	0.036	1.56	24.96	0.5	2.89E-04	0.82	Sandy silt units
Sandy Loam	0.065	0.41	0.075	1.89	106.1	0.5	1.23E-03	3.5	Silty sand units
Loamy Sand	0.057	0.41	0.124	2.28	350.2	0.5	4.05E-03	11	Fine-grained sand
Sand	0.045	0.43	0.145	2.68	712.8	0.5	8.25E-03	23	Sand above UA
Sand Hi K	0.045	0.43	0.145	2.68	1500	0.5	1.74E-02	49	Not used
Silty Loam	0.067	0.45	0.02	1.41	10.8	0.5	1.25E-04	0.35	MLU
Sand K 100	0.045	0.43	0.145	2.68	3000	0.5	3.47E-02	98	Main UA/LA sands

Parameter	Description
Qr	Residual soil water content, $ heta_{ m r}$
Qs	Saturated soil water content, $ heta_s$
Alpha	Parameter α in the soil water retention function [L ⁻¹]
n	Parameter <i>n</i> in the soil water retention function
Ks	Saturated hydraulic conductivity, K. [LT ¹]
1	Tortuosity parameter in the conductivity function [unitless]

Integrity - Service - Excellence

Finite Element Mesh (12,000 elements)

Integrity - Service - Excellence

Example Model Results—Pressure Head (cm)

Example Model Results—Water Content (fraction)

Example Model Results—Solute Transport (mg/L)

Water concentrations

Concentrations after Vadose Zone Remediation

Example Output

Concentrations at Observation Nodes

OU1 Hydrus Model Concentrations at

.0000000 SUA £e124 F7223 | 00000000 SUA | 00000000 6UA | 00000000 SUA |9UA

Recharge into Upper Aquifer

Integrity - Service - Excellence

Simulation of Sites with Vadose Zone and LNAPL Contamination

- Vadose zone massloading will be simulated as in previous example
- LNAPL area will be simulated as area of constant concentration
- Source—loading groundwater concentrations derived from water samples from selected LNAPL wells

Integrity - Service - Excellence

HYDRUS Model for Dieldrin Colloidal Transport Analysis

- HYDRUS C-Ride variably saturated porous media colloidal transport module used for Dieldrin migration modeling
- Based on mass balance of colloidal and dissolved contaminant species
- Includes colloidal straining (stuck on soil particles), sorption on carbon, and exclusion processes (flow through larger pores)
- HYDRUS calculations track colloids, solute sorbed on colloids, and solute in water

Integrity - Service - Excellence

OT071 Dieldrin Model Parameters

- Hydraulic parameters from site lithology and previous modeling
- Colloidal transport parameters from published studies and various HYDRUS examples
- Calibrate to Dieldrin application timing and observed groundwater plume

Integrity - Service - Excellence

Path Forward

- Obtain agreement that the Air Force can use HYDRUS model code for source-area remediation simulations
- **Conduct SS030 modeling**
 - Example for other sites as it has both vadose zone and LNAPL source areas
 - Have periodic model updates and technical discussions via on-line conference calls
 - Submit modeling report for review
- **Expand to other sites after SS030 discussions**

Integrity - Service - Excellence